THE AVERAGE OF THE VALUES OF A FUNCTION AT RANDOM POINTS

BY

ISAAC MEILIJSON

ABSTRACT

The behavior of $(1/N) \sum_{n=1}^{N} f(S_n)$ as $N \to \infty$ is considered, where f is a bounded measurable function on $(-\infty, \infty)$ and $(S_n)_{n=1}^{\infty}$ are the partial sums of a sequence of independent and identically distributed random variables.

Let f be a bounded, Borel measurable function on the real line. Let $X = (X_1, X_2, \cdots)$ be a sequence of independent and identically distributed random variables. Denote by $S = (S_1, S_2, \cdots)$ the partial sums $S_n = X_1 + X_2 + \cdots + X_n$. This paper studies the limiting behavior of $(1/N) \sum_{n=1}^{N} f(S_n)$ as $N \to \infty$. For simplicity, we will now introduce the main results under the further assumption that the distribution of X_1 is not singular to Lebesgue measure. The singular (lattice and not lattice) case will also be discussed.

RESULT 1. If $0 < E(X_1) < \infty$, then as $N \to \infty$,

(1)
$$(1/N)\sum_{n=1}^{N} f(S_n) - (1/(NE(X_1))) \int_0^{NE(X_1)} f(y) dy \to 0$$
 a.s

As a corollary, observe that

(2)
$$\limsup_{N \to \infty} ((1/N) \sum_{n=1}^{N} f(S_n)) = \limsup_{N \to \infty} ((1/N) \int_{0}^{N} f(y) dy) \quad a.s.$$

Even if the value of $E(X_1)$ is not directly involved, (2) might not hold when $E(X_1) = \infty$, as shown by part (b) of the next result.

As for the case $E(X_1) = 0$, nothing like Result 1 can be obtained in general. Consider the function f(x) = 0 or 1 depending on whether x is negative or non-

Received July 30, 1972

negative. By the arc sine law, $(1/N) \sum_{n=1} f(S_n)$ has in some cases a nondegenerate asymptotic distribution.

RESULT 2. Assume f to be nonnegative.

a) If
$$\limsup_{N \to \infty} ((1/N) \sup_M \int_M^{M+N} f(y) dy) = 0$$
, then
$$\limsup_{N \to \infty} ((1/N) \sum_{n=1}^N f(S_n)) = 0 \qquad a.s.$$

b) If $\limsup_{N\to\infty} ((1/N) \sup_{M\geq 0} \int_{M}^{M+N} f(y) dy) > 0$, then there exist distributions for X_1 for which $P(X_1 > 0) = 1$ and

$$\limsup_{N \to \infty} \left((1/N) \sum_{n=1}^{N} f(S_n) \right) > 0 \qquad a.s.$$

X is said to be distributed on (the lattice) $L_d = \{0, \pm d, \pm 2d, \dots\}$ (d > 0), if $P(X_1 \in L_d) = 1$ and d is the largest number with this property. If no such d exists, X is nonlattice. F is a distribution on L_d if, for X distributed F, X is distributed on L_d .

(3) Denote by C(K) the cardinality of the set K and by L(K) the Lebesgue measure of the set K. I will denote the set of positive integers.

LEMMA 1. Assume X_1 is distributed on L_1 and $0 < E(X_1) < \infty$. Then

(4)
$$\limsup_{N \to \infty} \left[\sup_{K} \left| (1/N) \sum_{n=1}^{N} P(S_n \in K) - (1/NE(X_1)) C(K \cap (0, NE(X_1))) \right| \right] = 0.$$

The supremum is taken over all subsets K of the set I of positive integers.

PROOF. Denote $\theta = E(X_1)$, $\gamma = 1 + \sum_{n=1}^{\infty} P(S_n = 0)$. $\gamma < \infty$ because $\theta > 0$. Fix $0 < \varepsilon < \theta$.

(5)

$$(1/N) \sum_{n=1}^{\infty} P(S_n \in K) = (1/N) \sum_{\alpha \in K} E(C\{n \mid 1 \le n \le N, S_n = \alpha\})$$

$$= (1/N) \sum_{\alpha \in K \cap (0, (\theta - \varepsilon)N)} E(C\{n \mid n \ge 1, S_n = \alpha\})$$

$$- (1/N) \sum_{\alpha \in K \cap (0, (\theta - \varepsilon)N)} E(C\{n \mid n > N, S_n = \alpha\})$$

$$+ (1/N) \sum_{\alpha \in K \cap [(\theta - \varepsilon)N, (\theta + \varepsilon)N]} E(C\{n \mid 1 \le n \le N, S_n = \alpha\})$$

$$+ (1/N) \sum_{\alpha \in K \cap ((\theta + \varepsilon)N, \infty)} E(C\{n \mid 1 \le n \le N, S_n = \alpha\}).$$

Vol. 15, 1973

We will now study each summand in the right hand side of (5) separately.

By the renewal theorem, (see [2, p. 347]),

(6)
$$E(C\{n \mid n \ge 1, S_n = \alpha\}) \to 1/\theta \text{ as } \alpha \to \infty.$$

Hence

(7)
$$\sup_{K} \left| (1/N) \sum_{\alpha \in K \cap (0, (\theta - \varepsilon)N)} E(C\{n \mid n \ge 1, S_n = \alpha\}) - (1/N\theta) C(K \cap (0, (\theta - \varepsilon)N)) \right| \to 0$$

as $N \to \infty$.

Secondly,

$$(1/N) \sum_{\alpha \in K \cap (0, (\theta - \varepsilon)N)} E(C\{n \mid n > N, S_n = \alpha\})$$

$$\leq (\gamma/N) \sum_{\alpha < (\theta - \varepsilon)N} P(\alpha \in \{S_{N+1}, S_{N+2}, \cdots\})$$

$$(8) \leq (\gamma/N) \sum_{\alpha < (\theta - \varepsilon)N} P(\min(S_{N+1}, S_{N+2}, \cdots) \leq \alpha)$$

$$\leq \gamma(\theta - \varepsilon) P((1/N)\min(S_{N+1}, S_{N+2}, \cdots) < \theta - \varepsilon) \to 0 \text{ as } N \to \infty,$$

by the strong law of large numbers. Thirdly,

(9)
$$(1/N) \sum_{\alpha \in K \cap [(\theta - \varepsilon)N, (\theta + \varepsilon)N]} E(C\{n \mid 1 \le n \le N, S_n = \alpha\}) \le \gamma(2\varepsilon + (1/N)),$$

and in the fourth term,

$$\sum_{\alpha \in K \cap ((\theta + \varepsilon) \ N, \infty)} E(C\{n \mid 1 \le n \le N, \ S_n = \alpha\})$$

$$(10) \qquad \qquad \leq (1/N) \sum_{\alpha > (\theta + \varepsilon)N} E(C\{n \mid 1 \le n \le N, \ S_n = \alpha\})$$

$$= (1/N) E(C\{n \mid 1 \le n \le N, \ S_n > (\theta + \varepsilon)N\})$$

$$\leq P((1/N) \max(S_1, S_2, \dots, S_N) > \theta + \varepsilon) \to 0 \quad \text{as} \quad N \to \infty$$

by the strong law of large numbers.

Combine (5), (7), (8), (9) and (10) to obtain

(11)
$$\lim_{N \to \infty} \sup_{K} \left[\sup_{K} \left| (1/N) \sum_{n=1}^{N} P(S_n \in K) - (1/N\theta) C(K \cap (0, N\theta]) \right| \right] \leq \varepsilon(2\gamma + 1/\theta).$$

Since ε is arbitrary, (4) follows.

LEMMA 2. Assume X_1 is nonlattice, and $0 < E(X_1) < \infty$.

I. MEILIJSON

Let U be independent of X, uniformly distributed is some interval [a, b]. Then

(12)
$$\lim_{N \to \infty} \sup_{K} \left[\sup_{n \to 1} \left| (1/N) \sum_{n=1}^{N} P(U + S_n \in K) - (1/NE(X_1)) L(K \cap (0, NE(X_1)]) \right| \right] = 0.$$

The supremum is taken over all measurable subsets K of $(0, \infty)$.

PROOF.

$$P(U + S_n \in K) = \frac{1}{b-a} \int_K P(\alpha - b < S_n \leq \alpha - a) d\alpha.$$

Hence

$$(1/N) \sum_{n=1}^{N} P(U+S_n \in K)$$

= $(1/N(b-a)) \int_K E(C\{n \mid 1 \le n \le N, \ \alpha-b < S_n \le \alpha-a\}) d\alpha.$

From this point on, the proof follows the same lines as that of Lemma 1.

- THEOREM 1. Assume $0 < E(X_1) < \infty$.
- a) If X_1 is distributed on L_d , then

(13)
$$(1/N) \sum_{n=1}^{N} f(S_n) - (d/NE(X_1)) \sum_{n=1}^{[NE(X_1)/d]} f(nd) \to 0$$
 a.s. as $N \to \infty$.

b) If X_1 is nonlattice, then for all x outside a Lebesgue null set,

$$(14) (1/N) \sum_{n=1}^{N} f(x+S_n) - (1/NE(X_1)) \int_0^{NE(X_1)} f(y) dy \to 0 \qquad a.s. \ as \ N \to \infty \,.$$

c) If the distribution of X_1 is not singular to Lebesgue measure, then

(15)
$$(1/N) \sum_{n=1}^{N} f(S_n) - (1/NE(X_1)) \int_0^{NE(X_1)} f(y) dy \to 0$$
 a.s. as $N \to \infty$.
PROOF.

Part (a). Without loss of generality, assume that d = 1, and that f only assumes the values 0 and 1. The statement for more general f's can then be obtained by approximating f by simple functions.

Denote $F = \{n \mid n \in I, f(n) = 1\}$. Denote $\theta = E(X_1)$. Fix $0 < \varepsilon < \theta$. Let the positive integer M satisfy (16) and (17).

(16)
$$\sup_{K \in I} \left| (1/M) \sum_{n=1}^{M} P(S_n \in K) - (1/M\theta) C(K \cap (0, M\theta)) \right| < \varepsilon/2.$$

Vol. 15, 1973

(17)
$$E\left|\left(S_{M}/M\right) - \theta\right| \leq \theta \varepsilon/2.$$

Such an *M* exists, because S_n/n as a reversed martingale converges to θ in the L_1 norm (see [1, Th. 5.24 and Problem 5.7]). Denote $S_0 = 0$. Let N = mM.

$$(1/N) \sum_{n=1}^{N} f(S_n) - (1/N\theta) \sum_{n=1}^{[N\theta]} f(n)$$

$$= (1/m) \sum_{n=1}^{m} (1/M) [C\{i|(n-1)M < i \le nM, S_i \in F\} - E(C\{i|(n-1)M < i \le nM, S_i \in F\} | S_0, S_1, \dots, S_{(n-1)M})]$$

$$+ (1/m) \sum_{n=1}^{m} (1/M) [E(C\{i|(n-1)M < i \le nM, S_i \in F\} | S_0, \dots, S_{(n-1)M}) - (1/\theta)C\{i|0 < i - S_{(n-1)M} \le M\theta, i \in F\}]$$

$$+ (1/m) \sum_{n=1}^{m} (1/M\theta) [C\{i|0 < i - S_{(n-1)M} \le M\theta, i \in F\} - C\{i|S_{(n-1)M} < i \le S_{nM}, i \in F\}]$$

+
$$(1/N\theta) [C\{i \mid 0 < i \leq S_N, i \in F\} - C\{i \mid 0 < \cdot \leq N\theta, i \in F\}].$$

In the last two summands of the right hand side of (18), if an inequality is vacuous, reverse it and change the sign of the corresponding $C\{.\}$. The first summand converges to zero a.s. as $N \to \infty$, by Levy's strong law of large numbers for martingales with bounded increments, (see [3 p. 250] or [4 p. 146]). The second summand is bounded in absolute value by $\varepsilon/2$, by (16).

The third summand is bounded in absolute value by

$$(1/m\theta) \sum_{n=1}^{m} \left| (S_{nM} - S_{(n-1)M}) / M - \theta \right|.$$

As $N \to \infty$, this bound converges a.s. to $(1/\theta)E |S_M/M - \theta| \leq \varepsilon/2$, by (17) and the strong law.

The last summand is bounded in absolute value by $(1/\theta) |S_N/N - \theta|$, which converges a.s. to zero, by the strong aw.

Hence

(19)
$$\limsup_{m \to \infty} \left| (1/N) \sum_{n=1}^{N} f(S_n) - (1/N\theta) \sum_{n=1}^{\lfloor N\theta \rfloor} f(n) \right| \leq \varepsilon \quad \text{a.s}$$

Since the left hand side of (19) does not actually depend on M and ε is arbitrary, (13) follows.

Part (b). The proof of Part (a) can be easily adapted to show that if X_1 is nonlattice and U is independent of X, uniformly distributed on some interval,

(20)
$$(1/N) \sum_{n=1}^{N} f(U+S_n) - (1/NE(X_1)) \int_{0}^{NE(X_1)} f(y) dy \to 0$$
 a.s. as $N \to \infty$.

But then, by Fubini, we obtain the desired result.

Part (c). From Part (b), if X_1 is nonlattice and U is independent of X and has an absolutely continuous distribution, (20) holds.

Now suppose the distribution of X_1 is not singular. Then the distribution of X_1 is a mixture of an absolutely continuous distribution F with mixing probability p > 0 and a singular distribution G with probability 1 - p. Denote by H the distribution on $\{0, 1\}$ with probabilities 1 - p and p respectively.

Let $Y_1, Y_2, \dots; Z_1, Z_2, \dots; P_1, P_2, \dots$ be independent; the Y's distributed F, the Z's G and the P's H. Then X_1, X_2, \dots can be produced as follows. If $P_n = 1$, $X_n = Y_n$. Otherwise $X_n = Z_n$. Let T be the least n with $P_n = 1$, and $U = X_1 + X_2 + \dots + X_T$. Denote, for $n \ge 1$, $X'_n = X_{n+T}$. Then $X' = (X'_1, X'_2, \dots)$ and U are independent, and U has an absolutely continuous distribution. Hence, because of Part (b), (20) holds, where the S_n 's are the partial sums of X'. But the partial sums of X', when added to U, turn into the partial sums of X, thus giving (15), because $P(T < \infty) = 1$.

REMARK. Perhaps Part (b) will look clearer after considering the following example. Suppose $P(X_1 = 1) = P(X_1 = \pi) = \frac{1}{2}$. Then X_1 is nonlattice. S never leaves a countable set A, the additive semigroup generated by 1 and π . Let f(x) = 1 for $x \in A$, f(x) = 0 otherwise. Then $f(S_n) \equiv 1$ a.s. while f = 0 a.e., so (15) is not satisfied.

LEMMA 3. Let F be a nondegenerate distribution on L_1 that assigns to zero positive probability. Let M be a positive integer bigger than 1. Then, on some probability space, it is possible to define M processes $S^{(1)}, S^{(2)}, \dots, S^{(M)}$ and a positive-integer-valued random variable T such that for each $1 \leq i \leq M$, $S^{(i)} = (S_1^{(i)}, S_2^{(i)}, \dots)$ are the partial sums of independent and identically Fdistributed random variables; and

(21) whenever
$$n \ge T$$
, $S_n^{(i+1)} = S_n^{(i)} + 1$ for every $1 \le i \le M - 1$.

PROOF. We will prove the statement for M = 2. The general case requires nothing more than a simple inductive step. For every positive integer J, denote by F_J the distribution of $(\min(X, J))^+ - (\min(-X, J))^+$ when X is distributed F. Since the greatest common divisor of a set of integers is the greatest common divisor of the elements of some finite subset, there exists a positive integer J such that F_J is a nondegenerate distribution on L_1 (proper). Fix such a J.

Let $X = (X_1, X_2, X_3, \cdots)$ be i.i.d. with common distribution F. Let

 $Y = (Y_1, Y_2, Y_3, \cdots)$ be i.i.d. with common distribution F_J . Let X and Y be independent. Define, for $n \ge 1$, $X_n^1 = X_n$ if $|X_n| > J$, $X_n^1 = Y_n$ otherwise. Define, for $n \ge 1$, $Z_n = X_n - X_n^1$.

Use P(x = 0) > 0 to obtain that Z_1, Z_2, Z_3, \cdots are i.i.d. with a common bounded, symmetric, nondegenerate distribution G on L_1 proper. Hence their partial sums form a recurrent random walk on L_1 . Hence, the least positive integer T for which $Z_1 + Z_2 + \cdots + Z_T = 1$ is almost surely defined. Define, for $n \ge 1$, $X_n'' = X_n^1$ if $n \le T$, $X_n'' = X_n$ otherwise. Then X_1'', X_2'', \cdots are i.i.d. with common distribution F. Define, for $n \ge 1$, $S_n^{(1)} = X_1'' + X_2'' + \cdots + X_n''$ and $S_n^{(2)} = X_1 + X_2 + \cdots + X_n$. Then $S^{(1)} = (S_1^{(1)}, S_2^{(1)}, \cdots), S^{(2)} = (S_1^{(2)}, S_2^{(2)}, \cdots)$ and T have the desired properties.

REMARK. Lemma 3 is a slight variation of a construction used in [5].

LEMMA 4. Let K be a set of integers such that

(22)
$$\limsup_{N\to\infty} (\sup_{M\in L_1} (C(K\cap (M, M+N]))/N) = 0$$

Let F be a distribution on L_1 . Denote by S_1, S_2, S_3, \cdots the partial sums of i.i.d. F-distributed random variables.

Then

(23)
$$\limsup_{N \to \infty} (\sup_{M \in L_1} (1/N) \sum_{n=1}^N P(M + S_n \in K)) = 0.$$

PROOF. Fix $\varepsilon > 0$. Let $N_0 \in I$ be such that for every interval $J \subset L_1$ of length at least $N_0, C(J \cap K) < (\varepsilon/4)C(J)$. Without loss of generality, we may assume that F is a nondegenerate distribution on L_1 proper. We will further assume that Fassigns to zero positive probability. Otherwise, mix F with a point mass at zero, thus retarding the random walk at every point by a geometric time. It is easy to see that the statement holds for a walk iff it holds for a retardation of the walk. Let $S^{(1)}, S^{(2)}, \dots, S^{(N_0)}, T$ satisfy the result of Lemma 3 for the distribution F. Let the positive integer A satisfy $P(T > A) \leq \varepsilon/2$. Let $L \geq 4A/\varepsilon$ be arbitrary, $L \in I$. Let $M \in L_1$ be arbitrary. Then on the set $\{T \leq A\}$, the number of pairs (i,j) with $1 \leq i \leq L$ and $1 \leq j \leq N_0$ for which $M + S_i^{(j)} \in K$ is at most $AN_0 + (\varepsilon/4)N_0L \leq (\varepsilon/2)N_0L$. On the set $\{T > A\}$, the number of those pairs is of course at most N_0L , so the expected number of those pairs is at most

$$(\varepsilon/2)N_0LP(T \le A) + N_0LP(T > A) \le \varepsilon N_0L.$$

Since $S^{(1)}$, $S^{(2)}$, ..., $S^{(N_0)}$ are identically distributed, we obtain finally that for every $\varepsilon > 0$ there exists an $L_0 \in I$ such that if $L \ge L_0$, $(1/L) \sum_{n=1}^{L} P(M + S_n^{(1)} \in K)$ $< \varepsilon$ for every $M \in L_1$. **THEOREM 2.** Assume f to be nonnegative.

(24) a) If $\limsup_{N\to\infty} ((1/N) \sup_{M\in L_1} \sum_{n=M+1}^{M+N} f(nd)) = 0$ and X_1 is distributed on L_d (d > 0), then, with probability one, $\limsup_{N\to\infty} ((1/N) \sum_{n=1}^N f(S_n)) = 0$.

b) If $\limsup_{N\to\infty} ((1/N) \sup_M \int_M^{M+N} f(y) dy) = 0$ and X_1 is nonlattice, then, for almost all (Lebegue) x, with probability one, $\limsup_{N\to\infty} ((1/N) \sum_{n=1}^N f(x+S_n)) = 0$.

c) Under the conditions of (b), if the distribution of X_1 is not singular to Lebesgue measure, the statement holds for x = 0.

PROOF. We will only prove part (a). The ideas involved in the following proof and those used in the proof of parts (b) and (c) of Theorem 1 can be easily adapted to prove parts (b) and (c) of the present theorem. The only major novelty to be introduced is a modification of Lemma 3 for the nonlattice case. Fix a small $\varepsilon > 0$ and replace $S_n^{(i+1)} = S_n^{(i)} + 1$ in (21) by $S_n^{(i+1)} - S_a^{(i)} \in (0, \varepsilon)$. Without loss of generality, assume d = 1.

We will prove the statement for functions f assuming the values 0 and 1. Suppose this has already been done. Fix an arbitrary $\varepsilon > 0$. Denote by f^1 the indicator function of the set $\{n \in L_1 | f(n) > \varepsilon\}$. Then f^1 satisfies the assumptions on f, and assumes the values 0 and 1 only.

Hence,

$$\limsup_{N\to\infty} \left((1/N) \sum_{n=1}^{N} f(S_n) \right) \leq \varepsilon + (\sup_{x} f(x)) \limsup_{N\to\infty} \left((1/N) \sum_{n=1}^{N} f^1(S_n) \right) = \varepsilon.$$

And that would end the proof.

For a function f obtaining the values 0 and 1 only and satisfying (24) for d = 1, denote $K = \{n \in L_1 | f(n) = 1\}$. Fix $\varepsilon > 0$. Using Lemma 4, fix N such that

(25)
$$\sup_{M \in L_1} (1/N) \sum_{n=1}^N P(M + S_n \in K) < \varepsilon.$$

Denote, for $n \ge 1$, $Y_n = (1/N)C\{m \mid (n-1)N < m \le nN, S_m \in K\}$, and $Y_0 \equiv 0$. Denote, for $n \ge 1$, $Z_n = Y_n - E(Y_n \mid Y_0, Y_1, \dots, Y_{n-1})$. $\{Z_n\}$ are the increments of a martingale with mean zero and uniformly bounded increments.

(26) Hence $(1/H) \sum_{n=1}^{H} Z_n \to 0$ a.s. as $H \to \infty$. (See [3, Section 69, p. 250] or [4 p. 146]). By (25), $0 \le E(Y_n | Y_0, Y_1, \dots, Y_{n-1}) < \varepsilon$, hence (a.s.) Vol. 15, 1973

(27)
$$\limsup_{H \to \infty} (1/H) \sum_{n=1}^{H} f(S_n) = \limsup_{H \to \infty} (1/NH) \sum_{n=1}^{NH} f(S_n)$$
$$= \limsup_{H \to \infty} (1/H) \sum_{n=1}^{H} Y_n = \limsup_{H \to \infty} ((1/H) \sum_{n=1}^{H} Z_n + (1/H) \sum_{n=1}^{H} E(Y_n | Y_0, Y_1, \dots, Y_{n-1})).$$

By (25), (26) and (27), $\limsup_{H\to\infty} (1/H) \sum_{n=1}^{H} f(S_n) \leq \varepsilon$ for every $\varepsilon > 0$; hence $\limsup_{H\to\infty} (1/H) \sum_{n=1}^{H} f(S_n) = 0$.

The next theorem is in a certain sense a converse of Theorem 2.

THEOREM 3. Assume f to be nonnegative.

a) If for some d > 0, $\limsup_{N \to \infty} ((1/N) \sup_{M \in L_1} \sum_{n=M+1}^{M+N} f(nd)) > 0$, then there exists a distribution F on L_d such that if S_1, S_2, \cdots are the partial sums of i.i.d. F-distributed random variables, then, with probability one,

$$\limsup_{N\to\infty} \left((1/N) \sum_{n=1}^{N} f(S_n) \right) > 0.$$

b) If $\limsup_{N\to\infty} (1/N) \sup_M \int_M^{M+N} f(y) dy > 0$, then there exist nonlattice distributions for which $\limsup_{N\to\infty} ((1/N) \sum_{n=1}^N f(x+S_n)) > 0$ almost surely for almost all x.

PROOF. We will prove the theorem only for d = 1, f obtaining values 0 and 1 only and such that $\limsup_{N\to\infty} ((1/N) \sup_{M \in I} \sum_{n=M+1}^{M+N} f(n)) > 0$. (Observe the " $M \in I$ " under the sup sign).

By the Hewitt-Savage zero-one law and by Fatou's lemma,

$$\limsup_{N\to\infty} (1/N) \sum_{n=1}^N f(S_n) \ge \limsup_{N\to\infty} ((1/N) E\left(\sum_{n=1}^N f(S_n)\right)$$
a.s.

So it is enough to build a distribution F on I for which

(28)
$$\limsup_{N\to\infty} (1/N)E\left(\sum_{n=1}^{N} f(S_n)\right) > 0.$$

The distribution F will have support $\{A_1, A_2, A_3, \dots\}$, where A_1, A_2, \dots form an increasing sequence of positive integers. The probability assigned to A_i will be proportional to $(1/N_i)$, where N_1, N_2, N_3, \dots is another increasing sequence of positive integers.

We will now define inductively the two sequences.

I. MEILIJSON

(29) Before that, denote $K = \{n \in I | f(n) = 1\}$ and

$$\eta = \limsup_{N \to \infty} \left((1/N) \sup_{M \in I} \sum_{n=M+1}^{M+N} f(n) \right).$$

(30) Let $A_1 = 1$ and N_1 be any even positive integer such that for every $N \ge N_1, \sup_{M \in I} ((1/N) \sum_{n=M+1}^{M+N} f(n) < (9/8)\eta.$

Suppose that $A_1, A_2, \dots, A_m; N_1, N_2, \dots, N_m$ have been defined and both sequences are strictly increasing. Denote by F_m the distribution supported by $\{A_1, A_2, \dots, A_m\}$ that assigns to A_i probability $1/(N_i \sum_{j=1}^m (1/N_j))$ $(i = 1, 2, \dots m)$. Denote its mean by μ , and by $S_1^{(m)}, S_2^{(m)}, \dots$ the partial sums of i.i.d., F_m -distributed random variables. Using Lemma 1, define N_{m+1} to be any even integer exceeding $2N_m$ such that whenever $N \ge N_{m+1}/2$,

(31)
$$\sup_{J \in I} \left| (1/N) \sum_{n=1}^{N} P(S_n^{(m)} \in J) - (1/N\mu) c(J \cap \{n \in I \mid n \leq N\mu\}) \right| < \eta/8.$$

Let A_{m+1} be a positive integer exceeding A_m and such that

(32)
$$C(K \cap \{A_{m+1} + n \mid n \in I, n \leq N_{m+1}\mu\})/(N_{m+1}\mu) > (7/8)\eta$$

Such an A_{m+1} exists, by the definition of η . (Denote $Q(M, N) = (1/N) \sum_{n=M+1}^{M+N} f(n)$. We leave it to the reader to check that

 $\limsup_{M\to\infty} Q(M,N) \ge \limsup_{N\to\infty} \limsup_{M\to\infty} Q(M,N) = \limsup_{N\to\infty} \sup_{M\in I} Q(M,N)).$

Observe that $\sum_{i=1}^{\infty} (1/N_i) \leq \sum_{i=1}^{\infty} (1/2)^i < \infty$, and let F be the distribution that assigns to A_i $(i = 1, 2, 3, \cdots)$ probability $1/(N_i \sum_{j=1}^{\infty} (1/N_j))$. We will now see that F satisfies (28). Fix $m \in I$. Think of it as being large. Let $X_1, X_2, \cdots, X_{N_m}$ be i.i.d., F-distributed random variables. Denote by B_m the event: {Among $X_1, X_2, \cdots, X_{N_m}$ all but one are less than A_m ; the exceptional one equals A_m and its index is at most $(N_m/2)$ }. The probability of B_m is

$$P(B_m) = (N_m/2)(c/N_m) \left[1 - (c/N_m) \sum_{j=m}^{\infty} (N_m/N_j) \right]^{N_m - 1},$$
$$c = \left[\sum_{j=1}^{\infty} (1/N_j) \right]^{-1}.$$

where

Since

$$\sum_{j=m}^{\infty} (N_m/N_j) < \sum_{j=0}^{\infty} 2^{-j} = 2,$$

(33) $\liminf_{m \to \infty} P(B_m) \ge (c/2) \exp(-2c).$

 (S_n) will denote partial sums of F-distributed variables and (T_n) partial sums of F_m -distributed variables.

$$\sum_{n=1}^{N_m} P(S_n \in K) \ge \sum_{n=(N/2)+1}^{N_m} P(S_n \in K) = P(B_m) \sum_{\substack{n=(N_m/2)+1}}^{N_m} P(S_n \in K/B_m)$$
(34)
$$= P(Bm) \sum_{\substack{n=(N_m/2)+1}}^{N_m} P(A_m + T_n \in K) = P(B_m) \sum_{\substack{n=1\\n=1}}^{N_m} P(A_m + T_n \in K) - \frac{\sum_{n=1}^{(N_m/2)} P(A_m + T_n \in K)}{-\sum_{n=1}^{(N_m/2)} P(A_m + T_n \in K)]}.$$

Use (31) to expand (34) further:

(35)
$$\sum_{n=1}^{N_m} P(S_n \in K) \ge N_m P(B_m) [(1/N_m \mu) C(K \cap \{A_m + n \mid n \in I, n \le N_m \mu\}) - (1/N_m \mu) C(K \cap \{A_m + n \mid n \in I, n \le \frac{1}{2} N_m \mu\}) - \frac{3}{16} \eta].$$

Apply (30) and (32) to (35), to obtain

(36)
$$(1/N_m) \sum_{n=1}^{N_m} P(S_n \in K) \ge P(B_m) \left[\frac{7}{8} \eta - \frac{9}{16} \eta - \frac{3}{16} \eta \right] = P(B_m) \eta / 8.$$

And finally, from (36),

$$\limsup_{N\to\infty} E\left((1/N)\sum_{n=1}^{N} f(S_n)\right) = \limsup_{N\to\infty} (1/N)\sum_{n=1}^{N} P(S_n \in K) \ge c \exp(-2c)\eta/16 > 0.$$

ACKNOWLEDGMENT

I would like to thank Professor Paul Erdös for some very fruitful conversations, as well as for an example that paved the way to Theorem 3.

References

1. L. Breiman, Probability, Addison-Wesley, 1968.

2. W. Feller, An Introduction to Probability Theory and its Applications, Volume II, Wiley, 1966.

3. P. Levy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.

4. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden Day, 1965.

5. D. Ornstein, Random Walks I, Trans. Amer. Math. Soc. 138 (1969), 1-44.

DEPARTMENT OF STATISTICS TEL AVIV UNIVERSITY TEL AVIV, ISRAEL