THE AVERAGE OF THE VALUES OF A FUNCTION AT RANDOM POINTS

BY

ISAAC MEILIJSON

ABSTRACT

The behavior of $(1/N) \sum_{n=1}^{N} f(S_n)$ as $N \to \infty$ is considered, where f is a bounded measurable function on $(-\infty, \infty)$ and $(S_n)_{n=1}^{\infty}$ are the partial sums of a sequence of independent and identically distributed random variables.

Let f be a bounded, Borel measurable function on the real line. Let X $=(X_1, X_2, \cdots)$ be a sequence of independent and identically distributed random variables. Denote by $S = (S_1, S_2, \cdots)$ the partial sums $S_n = X_1 + X_2 + \cdots + X_n$. This paper studies the limiting behavior of $(1/N) \sum_{n=1}^{N} f(S_n)$ as $N \to \infty$. For simplicity, we will now introduce the main results under the further assumption that the distribution of X_1 is not singular to Lebesgue measure. The singular (lattice and not lattice) case will also be discussed.

RESULT 1. *If* $0 < E(X_1) < \infty$, then as $N \to \infty$,

(1)
$$
(1/N)\sum_{n=1}^{N} f(S_n) - (1/(NE(X_1)))\int_0^{NE(X_1)} f(y)dy \to 0 \quad a.s.
$$

As a corollary, observe that

(2)
$$
\limsup_{N \to \infty} ((1/N) \sum_{n=1}^{N} f(S_n)) = \limsup_{N \to \infty} ((1/N) \int_{0}^{N} f(y) dy) \quad a.s.
$$

Even if the value of $E(X_1)$ is not directly involved, (2) might not hold when $E(X_1) = \infty$, as shown by part (b) of the next result.

As for the case $E(X_1) = 0$, nothing like Result 1 can be obtained in general. Consider the function $f(x) = 0$ or 1 depending on whether x is negative or non-

Received July 30, 1972

negative. By the arc sine law, $(1/N) \sum_{n=1}^{\infty} f(S_n)$ has in some cases a nondegenerate asymptotic distribution.

RESULT 2. *Assume f to be nonnegative.*

a) If
$$
\limsup_{N \to \infty} ((1/N) \sup_M \int_M^{M+N} f(y) dy) = 0
$$
, then

$$
\limsup_{N \to \infty} ((1/N) \sum_{n=1}^N f(S_n)) = 0 \quad a.s.
$$

 $\int M+N$ b) If $\limsup_{N\to\infty} ((1/N)\sup_{M\geq 0}$ $\vert f(y)dy) > 0$, then there exist distribu*tions for* X_1 *for which* $P(X_1 > 0) = 1$ *and*

$$
\limsup_{N \to \infty} ((1/N) \sum_{n=1}^{N} f(S_n)) > 0 \qquad a.s.
$$

X is said to be *distributed on (the lattice)* $L_d = \{0, \pm d, \pm 2d, \dots\}$ ($d > 0$), if $P(X_1 \in L_d) = 1$ and d is the largest number with this property. If no such d exists, X is *nonlattice.* F is a distribution on L_d if, for X distributed F, X is distributed on *La.*

(3) Denote by $C(K)$ the cardinality of the set K and by $L(K)$ the Lebesgue measure of the set K . I will denote the set of positive integers.

LEMMA 1. *Assume* X_1 is distributed on L_1 and $0 < E(X_1) < \infty$. *Then*

(4)
$$
\limsup_{N \to \infty} \left[\sup_{K} |(1/N) \sum_{n=1}^{N} P(S_n \in K) - (1/NE(X_1)) C(K \cap (0, NE(X_1)))| \right] = 0.
$$

The supremum is taken over all subsets K of the set I of positive integers.

PROOF. Denote $\theta = E(X_1)$, $\gamma = 1 + \sum_{n=1}^{\infty} P(S_n = 0)$. $\gamma < \infty$ because $\theta > 0$. Fix $0 < \varepsilon < \theta$. λ

(1/N)
$$
\sum_{n=1} P(S_n \in K) = (1/N) \sum_{\alpha \in K} E(C\{n \mid 1 \leq n \leq N, S_n = \alpha\})
$$

\n
$$
= (1/N) \sum_{\alpha \in K \cap (0, (\theta - \epsilon)N)} E(C\{n \mid n \geq 1, S_n = \alpha\})
$$

\n
$$
- (1/N) \sum_{\alpha \in K \cap (0, (\theta - \epsilon)N)} E(C\{n \mid n > N, S_n = \alpha\})
$$

\n
$$
+ (1/N) \sum_{\alpha \in K \cap ((\theta - \epsilon)N, (\theta + \epsilon)N)} E(C\{n \mid 1 \leq n \leq N, S_n = \alpha\})
$$

\n
$$
+ (1/N) \sum_{\alpha \in K \cap ((\theta + \epsilon)N, \infty)} E(C\{n \mid 1 \leq n \leq N, S_n = \alpha\}).
$$

We will now study each summand in the right hand side of (5) separately.

By the renewal theorem, (see [2, p. 347]),

(6)
$$
E(C\{n \mid n \geq 1, S_n = \alpha\}) \to 1/\theta \text{ as } \alpha \to \infty.
$$

Hence

(7)
$$
\sup_{K} \left| (1/N) \sum_{\alpha \in K \cap (0, (\theta - \varepsilon)N)} E(C\{n \mid n \ge 1, S_n = \alpha \}) \right|
$$

$$
(1/N\theta) C(K \cap (0, (\theta - \varepsilon)N)) \right| \to 0
$$

as $N \rightarrow \infty$.

Secondly,

$$
(1/N) \sum_{\alpha \in K \cap (0 \cdot (\theta - \varepsilon)N)} E(C\{n \mid n > N, S_n = \alpha\})
$$

\n
$$
\leq (\gamma/N) \sum_{\alpha < (\theta - \varepsilon)N} P(\alpha \in \{S_{N+1}, S_{N+2}, \cdots\})
$$

\n
$$
(8) \leq (\gamma/N) \sum_{\alpha < (\theta - \varepsilon)N} P(\min(S_{N+1}, S_{N+2}, \cdots) \leq \alpha)
$$

\n
$$
\leq \gamma(\theta - \varepsilon) P((1/N) \min(S_{N+1}, S_{N+2}, \cdots) < \theta - \varepsilon) \to 0 \text{ as } N \to \infty,
$$

by the strong law of large numbers. Thirdly,

$$
(9) (1/N) \sum_{\alpha \in K \cap [(\theta - \varepsilon)N, (\theta + \varepsilon)N]} E(C\{n \mid 1 \leq n \leq N, S_n = \alpha\}) \leq \gamma(2\varepsilon + (1/N)),
$$

and in the fourth term,

$$
\sum_{\alpha \in K} E(C\{n \mid 1 \le n \le N, S_n = \alpha\})
$$

\n
$$
\le (1/N) \sum_{\alpha > (\theta + \epsilon)N} E(C\{n \mid 1 \le n \le N, S_n = \alpha\})
$$

\n
$$
= (1/N) E(C\{n \mid 1 \le n \le N, S_n > (\theta + \epsilon)N\})
$$

\n
$$
\le P((1/N) \max(S_1, S_2, \cdots, S_N) > \theta + \epsilon) \to 0 \text{ as } N \to \infty
$$

by the strong law of large numbers.

Combine (5), (7), (8), (9) and (10) to obtain

$$
\limsup_{N \to \infty} \left[\sup_{K} \left| (1/N) \sum_{n=1}^{N} P(S_n \in K) - (1/N\theta) C(K \cap (0, N\theta]) \right| \right] \le \varepsilon(2\gamma + 1/\theta).
$$

Since ε is arbitrary, (4) follows.

LEMMA 2. *Assume* X_1 is nonlattice, and $0 < E(X_1) < \infty$.

196 I. MEILIJSON Israel J. Math..

Let U be independent of X, uniformly distributed is some interval [a, b]. Then

(12)
$$
\lim_{N \to \infty} \sup_{K} \left[\sup_{n=1} \left| (1/N) \sum_{n=1}^{N} P(U + S_n \in K) \right| - (1/NE(X_1))L(K \cap (0, NE(X_1)]) \right| = 0.
$$

The supremum is taken over all measurable subsets K of $(0, \infty)$.

PROOF.

$$
P(U+S_n\in K)=\frac{1}{b-a}\int_K P(\alpha-b
$$

Hence

$$
(1/N)\sum_{n=1}^{N} P(U+S_n \in K)
$$

= $(1/N(b-a)) \int_{K} E(C\{n \mid 1 \le n \le N, \alpha - b < S_n \le \alpha - a\}) d\alpha.$

From this point on, the proof follows the same lines as that of Lemma 1.

- THEOREM 1. *Assume* $0 < E(X_1) < \infty$.
- a) If X_1 is distributed on L_d , then

(13)
$$
(1/N) \sum_{n=1}^{N} f(S_n) - (d/NE(X_1)) \sum_{n=1}^{[NE(X_1)/d]} f(nd) \to 0
$$
 a.s. as $N \to \infty$.

b) If X_1 is nonlattice, then for all x outside a Lebesgue null set,

$$
(14) (1/N) \sum_{n=1}^{N} f(x + S_n) - (1/NE(X_1)) \int_{0}^{NE(X_1)} f(y) dy \to 0 \quad a.s. \; as \; N \to \infty.
$$

c) If the distribution of X_1 is not singular to Lebesgue measure, then

(15)
$$
(1/N) \sum_{n=1}^{N} f(S_n) - (1/NE(X_1)) \int_0^{NE(X_1)} f(y) dy \to 0
$$
 a.s. as $N \to \infty$.
PROOF.

PROOF.

Part (a). Without loss of generality, assume that $d = 1$, and that f only assumes the values 0 and 1. The statement for more general f 's can then be obtained by approximating f by simple functions.

Denote $F = \{n | n \in I, f(n) = 1\}$. Denote $\theta = E(X_1)$. Fix $0 < \varepsilon < \theta$. Let the positive integer M satisfy (16) and (17).

(16)
$$
\sup_{K \subset I} \left| (1/M) \sum_{n=1}^{M} P(S_n \in K) - (1/M\theta) C(K \cap (0, M\theta)) \right| < \varepsilon/2.
$$

(17)
$$
E\left[\left(S_M/M\right)-\theta\right]\leq \theta\epsilon/2.
$$

Such an *M* exists, because S_n/n as a reversed martingale converges to θ in the L_1 norm (see [1, Th. 5.24 and Problem 5.7]). Denote $S_0 = 0$. Let $N = mM$.

$$
(1/N) \sum_{n=1}^{N} f(S_n) - (1/N\theta) \sum_{n=1}^{[N\theta]} f(n)
$$

\n
$$
= (1/m) \sum_{n=1}^{m} (1/M) [C\{i | (n-1)M < i \leq nM, S_i \in F\} - E(C\{i | (n-1)M < i \leq nM, S_i \in F\} | S_0, S_1, \cdots, S_{(n-1)M})]
$$

\n+ $(1/m) \sum_{n=1}^{m} (1/M) [E(C\{i | (n-1)M < i \leq nM, S_i \in F\} | S_0, \cdots, S_{(n-1)M}) - (1/\theta) C\{i | 0 < i - S_{(n-1)M} \leq M\theta, i \in F\}]$
\n+ $(1/m) \sum_{n=1}^{m} (1/M\theta) [C\{i | 0 < i - S_{(n-1)M} \leq M\theta, i \in F\} - C\{i | S_{(n-1)M} < i \leq S_{nM}, i \in F\}]$
\n+ $(1/N\theta) [C\{i | 0 < i \leq S_N, i \in F\} - C\{i | 0 < i \leq N\theta, i \in F\}].$

In the last two summands of the right hand side of (18), if an inequality is vacuous, reverse it and change the sign of the corresponding $C\{.\}$. The first summand converges to zero a.s. as $N \rightarrow \infty$, by Levy's strong law of large numbers for martingales with bounded increments, (see $\lceil 3 \text{ p. } 250 \rceil$ or $\lceil 4 \text{ p. } 146 \rceil$). The second summand is bounded in absolute value by $\varepsilon/2$, by (16).

The third summand is bounded in absolute value by

$$
(1/m\theta)\sum_{n=1}^m|(S_{nM}-S_{(n-1)M})/M-\theta|.
$$

As $N \to \infty$, this bound converges a.s. to $(1/\theta)E|S_M/M - \theta| \leq \varepsilon/2$, by (17) and the strong law.

The last summand is bounded in absolute value by $(1/\theta) \left| S_N/N - \theta \right|$, which converges a.s. to zero, by the strong aw.

Hence

(19)
$$
\limsup_{m \to \infty} \left| (1/N) \sum_{n=1}^{N} f(S_n) - (1/N\theta) \sum_{n=1}^{[N\theta]} f(n) \right| \leq \varepsilon \quad \text{a.s.}
$$

Since the left hand side of (19) does not actually depend on M and ε is arbitrary, (13) follows.

Part (b). The proof of Part (a) can be easily adapted to show that if X_1 is nonlattice and U is independent of X , uniformly distributed on some interval,

$$
(20) (1/N) \sum_{n=1}^{N} f(U + S_n) - (1/NE(X_1)) \int_{0}^{NE(X_1)} f(y) dy \to 0 \quad \text{a.s. as } N \to \infty.
$$

But then, by Fubini, we obtain the desired result.

Part (c). From Part (b), if X_1 is nonlattice and U is independent of X and has an absolutely continuous distribution, (20) holds.

Now suppose the distribution of X_1 is not singular. Then the distribution of X_1 is a mixture of an absolutely continuous distribution F with mixing probability $p > 0$ and a singular distribution G with probability $1 - p$. Denote by H the distribution on $\{0,1\}$ with probabilities $1 - p$ and p respectively.

Let $Y_1, Y_2, \dots; Z_1, Z_2, \dots; P_1, P_2, \dots$ be independent; the Y's distributed F, the Z's G and the P's H. Then X_1, X_2, \cdots can be produced as follows. If $P_n = 1$, $X_n = Y_n$. Otherwise $X_n = Z_n$. Let T be the least n with $P_n = 1$, and $U = X_1 + X_2$ $+ \cdots + X_T$. Denote, for $n \geq 1$, $X'_n = X_{n+T}$. Then $X' = (X'_1, X'_2, \cdots)$ and U are independent, and U has an absolutely continuous distribution. Hence, because of Part (b), (20) holds, where the S_n 's are the partial sums of X'. But the partial sums of X' , when added to U , turn into the partial sums of X , thus giving (15), because $P(T < \infty) = 1$.

REMARK. Perhaps Part (b) will look clearer after considering the following example. Suppose $P(X_1 = 1) = P(X_1 = \pi) = \frac{1}{2}$. Then X_1 is nonlattice. S never leaves a countable set A, the additive semigroup generated by 1 and π . Let $f(x) = 1$ for $x \in A$, $f(x) = 0$ otherwise. Then $f(S_n) \equiv 1$ a.s. while $f = 0$ a.e., so (15) is not satisfied.

LEMMA 3. Let F be a nondegenerate distribution on L_1 that assigns to *zero positive probability. Let M be a positive integer bigger than 1. Then, on some probability space, it is possible to define M processes* $S^{(1)}, S^{(2)}, \dots, S^{(M)}$ and a positive-integer-valued random variable T such that for each $1 \leq i \leq M$, $S^{(i)} = (S_1^{(i)}, S_2^{(i)}, \cdots)$ are the partial sums of independent and identically F*distributed random variables; and*

(21) whenever
$$
n \geq T
$$
, $S_n^{(i+1)} = S_n^{(i)} + 1$ for every $1 \leq i \leq M - 1$.

PROOF. We will prove the statement for $M = 2$. The general case requires nothing more than a simple inductive step. For every positive integer J, denote by F_I the distribution of $(\min(X, J))^+$ - $(\min(- X, J))^+$ when X is distributed F. Since the greatest common divisor of a set of integers is the greatest common divisor of the elements of some finite subset, there exists a positive integer J such that F_j is a nondegenerate distribution on L_1 (proper). Fix such a J.

Let $X = (X_1, X_2, X_3, \cdots)$ be i.i.d. with common distribution F. Let

 $Y = (Y_1, Y_2, Y_3, \cdots)$ be i.i.d. with common distribution F_J . Let X and Y be independent. Define, for $n \geq 1$, $X_n^1 = X_n$ if $|X_n| > J$, $X_n^1 = Y_n$ otherwise. Define, for $n \geq 1$, $Z_n = X_n - X_n^1$.

Use $P(x = 0) > 0$ to obtain that Z_1, Z_2, Z_3, \dots are i.i.d. with a common bounded, symmetric, nondegenerate distribution G on L_1 proper. Hence their partial sums form a recurrent random walk on L_1 . Hence, the least positive integer T for which $Z_1 + Z_2 + \cdots + Z_T = 1$ is almost surely defined. Define, for $n \ge 1$, $X_n'' = X_n^1$ if $n \leq T$, $X_n'' = X_n$ otherwise. Then X_1'', X_2'', \cdots are i.i.d. with common distribution F. Define, for $n \ge 1$, $S_n^{(1)} = X_1'' + X_2'' + \cdots + X_n''$ and $S_n^{(2)} = X_1 + X_2 + \cdots + X_n$. Then $S^{(1)} = (S_1^{(1)}, S_2^{(1)}, \cdots), S^{(2)} = (S_1^{(2)}, S_2^{(2)}, \cdots)$ and T have the desired properties.

REMARK. Lemma 3 is a slight variation of a construction used in [5].

LEMMA 4. *Let K be a set of integers such that*

(22)
$$
\limsup_{N \to \infty} \left(\sup_{M \in L_1} (C(K \cap (M, M + N]))/N \right) = 0
$$

Let F be a distribution on L_1 . Denote by S_1, S_2, S_3, \cdots the partial sums of i.i.d. *F-distributed random variables.*

Then

(23)
$$
\lim_{N \to \infty} \sup_{M \in L_1} (\sup(1/N) \sum_{n=1}^{N} P(M + S_n \in K)) = 0.
$$

PROOF. Fix $\varepsilon > 0$. Let $N_0 \in I$ be such that for every interval $J \subset L_1$ of length at least N_0 , $C(J \cap K) < (\varepsilon/4)C(J)$. Without loss of generality, we may assume that F is a nondegenerate distribution on L_1 proper. We will further assume that F assigns to zero positive probability. Otherwise, mix F with a point mass at zero, thus retarding the random walk at every point by a geometric time. It is easy to see that the statement holds for a walk iffit holds for a retardation of the walk. Let $S^{(1)}, S^{(2)}, \dots, S^{(No)}$, *T* satisfy the result of Lemma 3 for the distribution *F*. Let the positive integer A satisfy $P(T > A) \le \varepsilon/2$. Let $L \ge 4A/\varepsilon$ be arbitrary, *LeI.* Let $M \in L_1$ be arbitrary. Then on the set $\{T \leq A\}$, the number of pairs (i,j) with $1 \leq i \leq L$ and $1 \leq j \leq N_0$ for which $M + S_i^{(j)} \in K$ is at most $AN_0 + (\varepsilon/4)N_0L \leq (\varepsilon/2)N_0L$. On the set $\{T > A\}$, the number of those pairs is of course at most N_0L , so the expected number of those pairs is at most

$$
(\varepsilon/2)N_0LP(T \leq A) + N_0LP(T > A) \leq \varepsilon N_0L.
$$

Since $S^{(1)}$, $S^{(2)}$, \cdots , $S^{(N_0)}$ are identically distributed, we obtain finally that for every $\varepsilon > 0$ there exists an $L_0 \in I$ such that if $L \ge L_0$, $(1/L) \sum_{n=1}^{L} P(M + S_n^{(1)} \in K)$ $<\varepsilon$ for every $M \in L_1$.

THEOREM 2. *Assume f to be nonneoative.*

(24) a) If $\limsup_{N\to\infty}$ ((1/N) $\sup_{M\in L_1} \sum_{n=M+1}^{M+N} f(nd) = 0$ and X_1 is distributed *on* L_d ($d > 0$), then, with probability one, $\limsup_{N\to\infty}$ ((1/N) $\sum_{n=1}^{N} f(S_n) = 0$.

b) *If* $\limsup_{N\to\infty}$ ((1/N) $\sup_M \int_M^{M+N} f(y) dy$ = 0 and X_1 is nonlattice, then, for *almost all (Lebegue) x, with probability one,* $\limsup_{N\to\infty} ((1/N) \sum_{n=1}^{N} f(x+S_n)) = 0$ *.*

c) Under the conditions of (b), if the distribution of X_1 is not singular to *Lebesque measure, the statement holds for* $x = 0$ *.*

PROOF. We will only prove part (a). The ideas involved in the following proof and those used in the proof of parts (b) and (c) of Theorem 1 can be easily adapted to prove parts (b) and (c) of the present theorem. The only major novelty to be introduced is a modification of Lemma 3 for the nonlattice case. Fix a small $\varepsilon > 0$ and replace $S_n^{(i+1)} = S_n^{(i)} + 1$ in (21) by $S_n^{(i+1)} - S_a^{(i)} \in (0, \varepsilon)$. Without loss of generality, assume $d = 1$.

We will prove the statement for functions f assuming the values 0 and 1. Suppose this has already been done. Fix an arbitrary $\varepsilon > 0$. Denote by f^1 the indicator function of the set $\{n \in L_1 | f(n) > \varepsilon\}$. Then f^1 satisfies the assumptions on f, and assumes the values 0 and 1 only.

Hence,

$$
\limsup_{N\to\infty} ((1/N)\sum_{n=1}^N f(S_n)) \leq \varepsilon + (\sup_x f(x)) \limsup_{N\to\infty} ((1/N)\sum_{n=1}^N f^1(S_n)) = \varepsilon.
$$

And that would end the proof.

For a function f obtaining the values 0 and 1 only and satisfying (24) for $d = 1$, denote $K = \{n \in L_1 | f(n) = 1\}$. Fix $\varepsilon > 0$. Using Lemma 4, fix N such that

(25)
$$
\sup_{M \in L_1} (1/N) \sum_{n=1}^N P(M + S_n \in K) < \varepsilon.
$$

Denote, for $n \ge 1$, $Y_n = (1/N)C\{m \mid (n-1)N < m \le nN$, $S_m \in K\}$, and $Y_0 \equiv 0$. Denote, for $n \geq 1$, $Z_n = Y_n - E(Y_n | Y_0, Y_1, \dots, Y_{n-1})$. $\{Z_n\}$ are the increments of a martingale with mean zero and uniformly bounded increments.

(26) Hence $(1/H) \sum_{n=1}^{H} Z_n \to 0$ a.s. as $H \to \infty$. (See [3, Section 69, p. 250] or [4 p. 146]). By (25), $0 \le E(Y_n | Y_0, Y_1, \dots, Y_{n-1}) < \varepsilon$, hence (a.s.)

Vol. 15, 1973

(27)
$$
\lim_{H \to \infty} \sup_{n=1} (1/H) \sum_{n=1}^{H} f(S_n) = \lim_{H \to \infty} \sup (1/NH) \sum_{n=1}^{NH} f(S_n)
$$

=
$$
\lim_{H \to \infty} \sup (1/H) \sum_{n=1}^{H} Y_n = \lim_{H \to \infty} \sup (1/H) \sum_{n=1}^{H} Z_n
$$

+
$$
(1/H) \sum_{n=1}^{H} E(Y_n | Y_0, Y_1, \dots, Y_{n-1})).
$$

By (25), (26) and (27), lim $\sup_{H\to\infty}$ (1/H) $\sum_{n=1}^{H} f(S_n) \leq \varepsilon$ for every $\varepsilon > 0$; hence lim $\sup_{H\to\infty} (1/H)$ $\sum_{n=1}^{H} f(S_n) = 0$.

The next theorem is in a certain sense a converse of Theorem 2.

THEOREM 3. *Assume f to be nonnegative.*

a) *If for some* $d > 0$ *, lim sup_{N→∞}* ((1/N) sup_{M ϵ L₁} $\sum_{n=M+1}^{M+N} f(nd)$) > 0, then there *exists a distribution F on* L_d *such that if* S_1, S_2, \cdots *are the partial sums of i.i.d. F-distributed random variables, then, with probability one,*

$$
\limsup_{N\to\infty} ((1/N)\sum_{n=1}^N f(S_n)) > 0.
$$

b) *If* $\limsup_{N\to\infty} (1/N) \sup_M \int_M^{M+N} f(y) dy > 0$, then there exist nonlattice *distributions for which* $\limsup_{N\to\infty} ((1/N) \sum_{n=1}^{N} f(x + S_n)) > 0$ *almost surely for almost all x.*

PROOF. We will prove the theorem only for $d = 1$, f obtaining values 0 and 1 only and such that $\limsup_{N\to\infty} ((1/N) \sup_{M\in I} \sum_{n=M+1}^{M+N} f(n)) > 0$. (Observe the " $M \in I$ " under the sup sign).

By the Hewitt-Savage zero-one law and by Fatou's lemma,

$$
\limsup_{N\to\infty} (1/N) \sum_{n=1}^N f(S_n) \geq \limsup_{N\to\infty} ((1/N) E\left(\sum_{n=1}^N f(S_n)\right)) \quad \text{a.s.}
$$

So it is enough to build a distribution F on I for which

(28)
$$
\limsup_{N\to\infty} (1/N) E\left(\sum_{n=1}^{N} f(S_n)\right) > 0.
$$

The distribution F will have support $\{A_1, A_2, A_3, \cdots\}$, where A_1, A_2, \cdots form an increasing sequence of positive integers. The probability assigned to A_i will be proportional to $(1/N_i)$, where N_1, N_2, N_3, \cdots is another increasing sequence of positive integers.

We will now define inductively the two sequences.

202 **I. MEILIJSON** Israel J. Math.,

(29) Before that, denote $K = \{n \in I | f(n) = 1\}$ and

$$
\eta = \limsup_{N \to \infty} \left((1/N) \sup_{M \in I} \sum_{n=M+1}^{M+N} f(n) \right).
$$

(30) Let $A_1 = 1$ and N_1 be any even positive integer such that for every $N \ge N_1$, sup_{M ϵI} $((1/N) \sum_{n=M+1}^{M+N} f(n) < (9/8)\eta$.

Suppose that A_1, A_2, \dots, A_m ; N_1, N_2, \dots, N_m have been defined and both sequences are strictly increasing. Denote by F_m the distribution supported by $\{A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_1, A_2, A_4, A_6, A_7, A_8, A_9, A_9, A_1, A_2, A_4, A_6, A_7, A_8, A_9, A_1, A_2, A_4, A_6, A_7, A_8, A_9, A_1, A_2, A_3, A_4, A_5,$ \cdots , A_m} that assigns to A_i probability $1/(N_i \sum_{i=1}^m (1/N_i))$ $(i = 1, 2, \cdots m)$. Denote its mean by μ , and by $S_1^{(m)}, S_2^{(m)}, \cdots$ the partial sums of i.i.d., F_m -distributed random variables. Using Lemma 1, define N_{m+1} to be any even integer exceeding $2N_m$ such that whenever $N \ge N_{m+1}/2$,

(31)
$$
\sup_{J \subset I} \left| (1/N) \sum_{n=1}^{N} P(S_n^{(m)} \in J) - (1/N\mu) c(J \cap \{n \in I \mid n \le N\mu\}) \right| < \eta/8.
$$

Let A_{m+1} be a positive integer exceeding A_m and such that

$$
(32) \tC(K \cap \{A_{m+1} + n \mid n \in I, n \le N_{m+1}\mu\})/(N_{m+1}\mu) > (7/8)\eta.
$$

Such an A_{m+1} exists, by the definition of η . (Denote $Q(M, N) = (1/N) \sum_{n=M+1}^{M+N} f(n)$. We leave it to the reader to check that

 $\limsup Q(M, N) \ge \limsup \limsup Q(M, N) = \limsup \sup Q(M, N).$ $M \rightarrow \infty$ $N \rightarrow \infty$ $M \rightarrow \infty$ $N \rightarrow \infty$ $M \in I$

Observe that $\sum_{i=1}^{\infty} (1/N_i) \leq \sum_{i=1}^{\infty} (1/2)^i < \infty$, and let F be the distribution that assigns to A_i ($i = 1, 2, 3, \cdots$) probability $1/(N_i \sum_{i=1}^{\infty} (1/N_i))$. We will now see that F satisfies (28). Fix $m \in I$. Think of it as being large. Let X_1, X_2, \dots, X_{N_m} be i.i.d., *F*-distributed random variables. Denote by B_m the event: {Among X_1, X_2, \dots, X_{N_m} all but one are less than A_m ; the exceptional one equals A_m and its index is at most $(N_m/2)$. The probability of B_m is

$$
P(B_m) = (N_m/2) (c/N_m) \left[1 - (c/N_m) \sum_{j=m}^{\infty} (N_m/N_j) \right]^{N_m - 1},
$$

$$
c = \left[\sum_{j=1}^{\infty} (1/N_j) \right]^{-1}.
$$

where

Since

$$
\sum_{j=m}^{\infty} (N_m/N_j) < \sum_{j=0}^{\infty} 2^{-j} = 2,
$$

(33)
$$
\liminf_{m \to \infty} P(B_m) \geq (c/2) \exp(-2c).
$$

$$
\sum_{n=1}^{N_m} P(S_n \in K) \ge \sum_{n=(N-2)+1}^{N_m} P(S_n \in K) = P(B_m) \sum_{n=(N_m/2)+1}^{N_m} P(S_n \in K / B_m)
$$
\n(34)\n
$$
= P(Bm) \sum_{n=(N_m/2)+1}^{N_m} P(A_m + T_n \in K) = P(B_m) \sum_{n=1}^{N_m} P(A_m + T_n \in K) - \sum_{n=1}^{(N_m/2)} P(A_m + T_n \in K)].
$$

Use (31) to expand (34) further:

$$
\sum_{n=1}^{N_m} P(S_n \in K) \ge N_m P(B_m) \left[(1/N_m \mu) C(K \cap \{A_m + n \mid n \in I, n \le N_m \mu \}) - (1/N_m \mu) C(K \cap \{A_m + n \mid n \in I, n \le \frac{1}{2} N_m \mu \}) - \frac{3}{16} \eta \right].
$$

Apply (30) and (32) to (35) , to obtain

(36)
$$
(1/N_m) \sum_{n=1}^{N_m} P(S_n \in K) \ge P(B_m) \left[\frac{7}{8} \eta - \frac{9}{16} \eta - \frac{3}{16} \eta \right] = P(B_m) \eta / 8.
$$

And finally, from (36),

$$
\limsup_{N\to\infty} E\left((1/N)\sum_{n=1}^N f(S_n)\right) = \limsup_{N\to\infty} (1/N)\sum_{n=1}^N P(S_n \in K) \geq c \exp(-2c)\eta/16 > 0.
$$

ACKNOWLEDGMENT

I would like to thank Professor Paul Erdös for some very fruitful conversations, as well as for an example that paved the way to Theorem 3.

REFERENCES

1. L. Breiman, *Probability,* Addison-Wesley, 1968.

2. W. Feller, *An Introduction to Probability Theory and its Applications,* Volume II, Wiley, 1966.

3. P. Levy, Thdorie de l'addition des variables aldatoires, Gauthier-Villars, Paris, 1937.

4. J. Neveu, *Mathematical Foundations of the Calculus of Probability*, Holden Day, 1965.

5. D. Ornstein, *Random Walks I,* Trans. Amer. Math. Soc. 138 (1969), 1-44.

DEPARTMENT OF STATISTICS TEL Avlv UNIVERSITY TEL AVIV, ISRAEL