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ABSTRACT 

The behavior of (1/N) EnN= 1 f(Sn) as N ~ oO is considered, where f is a boun- 
ded measurable function on ( -- oo, oo) and (Sn)n= 1~~ are the partial sums 
of a sequence of independent and identically distributed random variables. 

Let f be a bounded, Borel measurable function on the real line. Let X 

= (Xt, X 2 , ' " )  be a sequence of  independent and identically distributed random 

variables. Denote by S = (St, $ 2 , " ' )  the partial sums Sn = Xt  + X2 + "" + X,. 

This paper studies the limiting behavior of (1 IN) E~= i f(S,) as N ~ 00. For  

simplicity, we will now introduce the main results under the further assumption 

that the distribution of X1 is not singular to Lebesgue measure. The singular 

(lattice and not lattice) case will also be discussed. 

RESULT 1. I f  0 < E(X1) < o0, then as N-*  0% 

N I*  NE(Xt) 

(1) (1 IN) 2 f(S,,) - (1/(NE(XI))) | f (y)dy  --* 0 a.s. 
n = l  dO 

As a corollary, observe that 

N fo N (2) lira sup ((1/N) 2 f(S,))  = lim sup ((1 IN) f (y)dy)  a.s. 
N"* oo n = l  N--* co 

Even if the value of E(X~) is not directly involved, (2) might not hold when 

E(X1) = ~ ,  as shown by part (h) of  the next result. 

As for the case E(X~) = O, nothing like Result 1 can be obtained in general. 

Consider the function f (x )  = 0 or 1 depending on whether x is negative or non- 
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negative. By the arc sine law, (1/N) ~,, = l f (S , )  has in some cases a nondegenerate 

asymptotic distribution. 

RESULT 2. Assume f to be nonnegative. 

a) I f  l imsup~,~  ((1/N) S U p M  f(y)dy)  = 0, then 

N 

lim sup ((1 IN) ~, f (S,))  = 0 a.s. 
N"* co n = 1  

/,M+N 
b) I f  lim supN_.~ ((1/N) supM~o J,~ f(y):ly) > O, then there exist distribu- 

tions for XI for which P(XI > O) = 1 and 

N 

lira sup ((1/N) ~ f(S~)) > 0 a.s. 

X is said to be distributed on (the lattice) L a = {0, + d, + 2d,...} (d > 0), if 

P(X1 e La) = 1 and d is the largest number with this property. If no such d exists, 

X is nonlattice. F is a distribution on L d if, lbr X distributed F, X is distributed 

on La. 

(3) Denote by C(K) the cardinality of the set K and by L(K) the Lebesgue 

measure of the set K. I will denote the set of positive integers. 

LEM~ 1. Assume XI  is distributed on L1 and 0 < E(XO < oo. 

Then 

(4) lim sup sup I(1/N) • P(S, e K) - (1/NE(Xx)) C(K n (0, NE(X~))) 1 = 0. 
N~oo n = l  

The supremum is taken over all subsets K of the set I of positive integers. 

PROOF. Denote 0 = E(XI), 7 = 1 + Y~,~ 1 P(S, = 0). 7 < oo because 0 > 0. Fix 

0 < s < 0 .  

(1/N ) Y~ P(S. e K ) = ( I / N )  Z E ( C { n l l < n < N , S . = ~ } )  
(5) .=1  , , ~  

= (~/N) X e(c{n I n _-> i ,  s .  = ~}) 
~egr~(O, (S-  O/v) 

- ( l /N)  Y~ E(C{n]n>N,  Sn=~}) 
r K n(0 ,  ( 0 -  ON) 

+ ( l /N)  ]E E(C{n] 1 -< n -< N, S. = ~z}) 
r K h i ( 0 -  e)N,(O + 0N]  

+ (1/N) X E(C{n ] 1 -< n -< N, S. = ~}). 
ct e K ~((O+ e)N,oo) 
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We will now study each summand in the right hand side of (5) separately. 

By the renewal theorem, (see [2, p. 347]), 

(6) E(c{nl n > 1, S .  = a}) --} 1 / 0  as c~ --+ oo. 

Hence 
sup ]( l /N) ~ E(C{n!n> 1,S. = ct}) 
K (7) ~ ~ r ~r 

(1/NO) C(K (~ (0,(0 - e)N))[ ~ 0 
as N ~ .  

Secondly, 

(1/N) X E(C(n [ n > N, S. = ~}) 
at e K n(O ,(O- ,~)N) 

<=(~/N) Y. P(Cx6(SN+I,SN+2,"'}) 
at < ( 0 -  O N  

(8) <- (~,/N) Y~ P(min(SN+x,SN+2,'") <= ~) 
at<(0-,)N 

=< 7(0 - e)P((1/N) min(SN+ 1, S N + 2 ,  " " )  ( 0 --  / ~ ) ~  0 as N ~ ao, 

by the strong law of large numbers. 

Thirdly, 

(9) ( I /N)  X E(c{nl l _< n -< N, S. = a}) =< 7(2e + (I/N)),  
at ~. K rt[(O- e)N,(O+ 8)N] 

and in the fourth term, 

(10) 

~, E(C{n [ 1 _< n _ N, S. = ~}) 
at eKn((O+ ~) N,oo) 

=< (I /N)  X E(C{nII_<n_<N,S.=~}) 
at> (O + e)N 

= (1/N) E(C{n 11 ___ n _ N, S. > (0 + 0N})  

=< P((1/N) max ($1, $2 , ' " ,  SN) > 0 + 0 ~ 0 as N ~  oo 

by the strong law of large numbers. 

Combine (5), (7), (8), (9) and (10) to obtain 

[~ (1 N I ]  lim sup p /N) E P(S,,eK) - O/NO) C(K C3(O, NO]) 
n = l  (11) ,,-,oo 

< 8(2V + 1 ]0). 

Since e is arbitrary, (4) follows. 

LEMMA 2. Assume X1 is nonlattice, and 0 < E(Xx) < oo. 
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Let U be independent of X,  uniformly distributed is some interval [a, b]. Then 

N 
lim sup [sup I (1 IN) ~ P(U + S, ~ K) 

(12) N--, oo K ,, = 1 

- (1/NE(X~)) L(K ~ (0, NE(Xz)])t ] = O. 

The supremum is taken over all measurable subsets K of (0, ~) .  

Hence 

PROOF. 

1 f r  P(~ - b < S .  <- o~ - a)do~. P(U + S . ~ K )  - b - a 

N 
( l /N)  Z P ( U + S . ~ K )  

n = l  

- a)) JKE(C{n] 1 ~ n ~ N, ~ - b < S. <= o~ - a})d~. (lyV(b 

From this point on, the proof follows the same lines as that of  Lemma 1. 

THEOREM 1. Assume 0 < E(X1) < 00. 

a) I f  X 1 is distributed on La, then 

N [NE(Xt)/~] 
(13) ( I /N)  ~ f ( S , ) - ( d / N E ( X 1 ) )  ~ f ( n d ) ~ O  

n = l  n = l  

b) I f  X1 is nonlattice, then for all x outside a Lebesgue null set, 

a.s. as N ~ Go. 

N fONE(Xt)f  
(14) (1/N) ~ f ( x  + Sn) - (1/NE(Xx)) (y)dy ~ 0 a.s. as N ~ ~ .  

n=l  

c) I f  the distribution of XI  is not singular to Lebesgue measure, then 

N foNE(X~) (15) (1 ]N) Y, f ( S . ) -  (1/NE(Xx)) f (y )dy  --> 0 a.s. as N ~ oo. 
n=l 

P R O O F .  

Part (a). Without loss of generality, assume that d = 1, and that f only 

assumes the values 0 and 1. The statement for more general f ' s  can then be 

obtained by approximating f by simple functions. 

Denote F = {n[n~I ,  f (n)  = 1}. Denote 0 = E(X1). Fix 0 < e < 0. Let the 

positive integer M satisfy (16) and (17). 

M I 
(16) sup ( I /M) Z P(S, e K ) - ( 1 / M O ) C ( K n ( O ,  MO)) I<e /2 .  

K~I n=l  
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(17) E l (SMIM) - 01 < 0~12. 

Such an M exists, because S,/n as a reversed martingale converges to 0 in the L1 

norm (see [1, Th. 5.24 and Problem 5.7]). Denote So = 0. Let N = raM. 

[NO] 

( l /N)  E J (Sn) - (1 /NO)  ~, f (n)  
n = l  n = l  

= (lira) ~, 
n = l  

m 

+ (1/m) Z 
n = l  

(18) 

+ (1/m) 
n = l  

( 1 / M ) [ C { i l ( n  - 1 ) M <  i < n M ,  S, uF}  

- E ( C { i t ( n -  1) M < i < nM, S, ~_ F}I S o, S~,.-., S(~_ 1)M)] 

(1/M) 1-E(C{il ( n -  I)M < i <= nM, S i e F}I So,..., sr x).~) 
- ( l  lO)C{i]O < i -  S(.-1)M < MO, i e r } ]  

(1/MO) [c{i I o < i -- Scn_ 1)u < MO, i ~ F} 

- C { i  I Scn_l) M < i < SnM,ieF}] 

+ (l/N0) [C{i I 0 < i <= S~, i ~ F} - C{i I o < ,  < NO, i e F}]. 

In the last two summands of the right hand side of (18), if an inequality is vacuous, 

reverse it and change the sign of the corresponding C{.}.The first summand 

converges to zero a.s. as N--, or, by Levy's strong law of large numbers for 

martingales with bounded increments, (see 1-3 p. 250] or 1-4 p. 146]). The second 

summand is bounded in absolute value by e/2, by (16). 

The third summand is bounded in absolute value by 

(1 ~toO) End1 I( SnM - S(,-1)M)/ M -- 01. 

As N ~  m, this bound converges a.s. to (1/O)E] S M / M -  0] < e/2, by (17) and 

the strong law. 

The last summand is bounded in absolute value by (1/O)[SN/N- 01, which 

converges a.s. to zero, by the strong aw. 

Hence 

N [ NO] 

(19) limsup I(1/N) Z f ( S . ) - ( 1 / N O )  ~, f (n)[<=8 
m--+ oo t l = l  r i l l  

a . s .  

Since the left hand side of (19) does not actually depend on M and e is arbitrary, 

(13) follows. 

Part (b). The proof of Part (a) can be easily adapted to show that if XI is 

nonlattice and U is independent of X, uniformly distributed on some interval, 

N f ,  NE(Xt)  

(20) (1/N) Z f (U  + S.) - (t/NE(Xt))|oa f (y)dy  ~ 0 a.s. as N --* oo. 
n = l  
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But then, by Fubini, we obtain the desired result. 

Part (c). From Part (b), if X1 is nonlattice and U is independent of X and has 

an absolutely continuous distribution, (20) holds. 

Now suppose the distribution of X1 is not singular. Then the distribution of Xt  

is a mixture of an absolutely continuous distribution F with mixing probability 

p > 0 and a singular distribution G with probability 1 -  p. Denote by H the 

distribution on {0,1} with probabilities 1 - p and p respectively. 

Let Y1, Y2,'"; Zl, Z2,'"; P1, P2,"" be independent; the Y's distributed F, the 

Z's G and the P's H. Then X~,X 2,... can be produced as follows. If  Pn = 1, 

Xn = Yn. Otherwise Xn = Z,. Let T be the least n with P, = 1, and U = X1 + X2 
g ? I + ... + X r. Denote, for n > 1, X, = X,+ r. Then X'  = (XI,X2, . . . )  and U are 

independent, and U has an absolutely continuous distribution. Hence, because 

of Part (b), (20) holds, where the S,'s are the partial sums of X'. But the partial 

sums of X', when added to U, turn into the partial sums of X, thus giving (15), 

because P(T < oo) = 1. 

REMARK. Perhaps Part (b) will look clearer after considering the following 

example. Suppose P(Xx = 1) = P(X1 = re) = �89 Then X1 is nonlattice. S never 

leaves a countable set A, the additive semigroup generated by 1 and n. Let 

f ( x )  = 1 for x ~ A , f ( x )  = 0 otherwise. Then f(S,)  - 1 a.s. while f =  0 a.e., so (15) 

is not satisfied. 

LEMMA 3. Let F be a nondegenerate distribution on Ll  that assigns to 

zero positive probability. Let M be a positive integer bigger than 1. Then, on 

some probability space, it is possible to define M processes S C~), S ~2~, ..., S cM) 

and a positive-integer-valued random variable T such that for each 1 < i < M, 
S(i) /r r = ~'1 ,o2 , ' " )  are the partial sums of independent and identically F- 

distributed random variables; and 

(21) whenever n >= 7, -n'q~i+ ~) = -~'q(~ + l for every 1 _< i _< M - 1. 

PROOF. We will prove the statement for M = 2. The general case requires 

nothing more than a simple inductive step. For every positive integer J, denote by 

F~ the distribution of (min(X,J)) + - ( m i n ( -  X, J)) § when X is distributed F. 

Since the greatest common divisor of a set of integers is the greatest common 

divisor of the elements of some finite subset, there exists a positive integer J such 

that Fj  is a nondegenerate distribution on L1 (proper). Fix such a J. 

Let X = (X1, X2, Xa, " ')  be i.i.d, with common distribution F. Let 
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Y = (Yt, Y2, Ya, "") be i.i.d, with common distribution Fj.  Let X and 

Y be independent. Define, for n > 1, X~ = X,  if I X ,  [ >  J, X~ = Y, 

otherwise. Define, for n > 1, Z, = X , -  X~. 

Use P(x = 0 ) >0  to obtain that Zt,Z2,Za,'" are i.i.d, with a common bounded, 

symmetric, nondegenerate distribution G on L1 proper. Hence their partial sums 

form a recurrent random walk on Lt.  Hence, the least positive integer T for which 

Z1 + Z2 + "" + Zr  = 1 is almost surely defined. Define, for n > 1, X~ = X,  1 if 
tr n < T, X" = X,  otherwise. Then X~, X2 , - "  are i.i.d, with common distribution F. 

Define, for n > 1, S(, ~) = X'~ + X~ + ..- + X~ and S~ 2) = X t + X 2  + "" + X,. 

Then S (O rr ~,(i) . . ) ,  C(2)_ /~ , (2)  q,(2) = ~,t  ,~,2 ," ~, - w l  ,,,2 , "") and T have the desired properties. 

REMARK. Lemma 3 is a slight variation of a construction used in [5]. 

LEMMA 4. Let K be a set of integers such that 

(22) l iE sup ( sup (C(K n ( M , M  + NJ))/N) = 0 
N--*oo M e L 1  

Let F be a distribution on LI. Denote by S~, $2, $3,... the partial sums of i.i.d. 

F-distributed random variables. 

Then 

(23) lim sup (sup(l/N) Z.~=l P(M + S, e If)) = O. 
N.-* oo M e L t  

PROOF. Fix 8>0. Let Noel  be such that-for every interval J c Lt  of length 

at least No, C(J nK)  < (e/4)C(J). Without loss of generality, we may assume that 

F is a nondegenerate distribution on L~ proper. We will further assume that F 

assigns to zero positive probability. Otherwise, mix F with a point mass at zero, 

thus retarding the random walk at every point by a geometric time. It is easy 

to see that the statement holds for a walk iffit holds for a retardation of the walk. 

Let S(t),S(2),...,S(~~ T satisfy the result of Lemma 3 for the distribution F. 

Let the positive integer A satisfy P(T > A) < el2. Let L > 4Ale be arbitrary, 

L e I .  Let M e L t  be arbitrary. Then on the set {T < A}, the number of pairs 

(i,j) with 1 < i < L and 1 < j  ~ No for which M + S I t J ) ~ K  is at most 

ANo + (e/4)NoL < (e/2)NoL. On the set {T > A}, the number of those pairs 

is of course at most NoL, so the expected number of those pairs is at most 

(e/2)NoLP(T < A) + NoLP(T> A) < eNoL. 

Since S ~ S (2), ...,S (N~ are identically distributed, we obtain finally that for 

~,, = 1 P ( M  + every e > 0 there exists an L o e I such that if L > Lo, (1/L) r. S (1) ~ K) 

< ~  for every M e L t .  
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THEOREM 2. Assume f to be nonneoative. 

vM+N rrnd~ = 0 and X t  is distributed (24) a) i f  limsupN_.| , ~.=U+IJ~ JJ 

on La (d > 0), then, with probability one, lim supN_.oo((1/N) E.~ IJ(S.))= 0. 

b) I f  lim supN_, oo ((1/N) supM j '~+ Nf(y)dy) = 0 and X1 is nonlattice, then, for  

almost all (Lebeoue) x, with probability one, lim supN-. ~o ((I/N) ]E~= l f (x  + S.)) = O. 

c) Under the conditions of (b), if  the distribution of X1 is not singular to 

Lebesoue measure, the statement holds for  x = O. 

PROOF. We will only prove part (a). The ideas involved in the following proof 

and those used in the proof of parts (b) and (c) of Theorem 1 can be easily adapted 

to prove parts (b) and (c) of the present theorem. The only major novelty to be 

introduced is a modification of Lemma 3 for the nonlattice case. Fix a small e > 0 

and replace .~(~+t) ~(~) + 1 in (21) by .~(~+a) _ ,~(o ~ (0, e). Without loss of 

generality, assume d = 1. 

We will prove the statement for functionsf assuming the values 0 and 1. Suppose 

this has already been done. Fix an arbitrary e > 0. Denote by fx the indicator 

function of the set {n ~ La If(n) > e}. Then f l  satisfies the assumptions on f, and 

assumes the values 0 and 1 only. 

Hence, 

N N 

lim sup ((1/N) 5~ f (S . ) )  < e + ( sup f ( x ) )  lim sup ((l/N) ]E f~(S,))  = e. 
N'-* oo n = l  x N~Qo n = l  

And that would end the proof. 

For a function f obtaining the values 0 and 1 only and satiffying (24) for d = 1, 

denote K = {n e Lx I f (n )  = 1}. Fix e > 0. Using Lemma 4, fix N such that 

N 

(25) sup (1/N) ]E P(M + S,, ~ K) < e. 
MeLI n = l  

Denote, for n > 1, Y, = (1 [N)C{m [ (n - 1)N < m < nN, S,,, ~ K}, and Yo = 0. 

Denote, for n > 1, Z,  = Y. - E(Y.[ Yo, Y1,'", Y,- 1). {Z,} are the increments of 

a martingale with mean zero and uniformly bounded increments. 

H (26) Hence (1 [n)  ~.,,,= 1Z,, 0 a.s. as H ~ oo. (See [3, Section 69, p. 250] or 

[4 p. 146]). 

By (25), 0 < E(Y.I Yo, Yx, "", u 1) < ~, hence (a.s.) 
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H 

(27) lim sup (1/H) • f(S,) = lim sup (1/NH) 
H - ~  n = l  H-*oo 

B H 

= lim sup (1/n)  Y. Y,, = lim sup ((1/n) Y~ Z, 
H--* oo n = l  H--* Qo n = l  

AVERAGE AT RANDOM POINTS 

NIt 

X f(S.)  
r l = l  

H 

+ (1/H) X 
n = l  

201 

E(Y I Vo, ..., Yo_ 

By (25), (26) and (27), lim supH_, ~ (1/H) ~'~=1 f(S,) < ~ for every e > 0; hence 

lim SUPH~ oo (1/H) Z~=lf(S,) = 0. 

The next theorem is in a certain sense a converse of Theorem 2. 

THEOREM 3. Assume f to be nonnegative. 

M + N  a) I f  for some d > 0, lim SUpu~ ((1/N) SUPM ~ L1 Y~, =M+ lf(nd)) > O, then there 

exists a distribution F on L d such that if SI, $2,... are the partial sums of i.i.d. 

F-distributed random variables, then, with probability one, 

N 

lira sup ((1/N) ~ f(S.)) > O. 
N.-* oo n = l  

~M "J (y)dy > 0, then there exist nonlattice b) I f  lim SUps..| (1/N)SUpM M+N 

Y~,=j f(x + Sn)) > 0 almost surely for distributions for which limsUpu_,~ o ((l /N) S 

almost all x. 

PROOF. We will prove the theorem only for d = 1, f obtaining values 0 and 1 
~ M + N  only and such that lira SUpu-.~o ((1/N) SUpMEI --,=M+I f (n))> 0. (Observe the 

" M ~ I "  under the sup sign). 

By the Hewitt-Savage zero-one law and by Fatou's lemma, 

lim sup (1/N) ~. f(S.) >= lira sup ((1/g) E f(S .  a.s. 
N"* Qo n = l  N ~ o o  n = l  

So it is enough to build a distribution F on I for which 

(28) limsup(1/N)E(N...oo n=1 ~ f(Sn)) >0" 

The distribution F will have support {AI,A2,A3,.. '),  where A1,A2,"" form an 

increasing sequence of positive integers. The probability assigned to At will be 

proportional to ( l /N3,  where NI, N2,N3, '"  is another increasing sequence of 

positive integers. 

We will now define inductively the two sequences. 
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(29) Before that, denote K = {n Ellf(n)= 1} and 

/ M+N \ 

r /=  lim sup | (1/N) sup ~, f(n)~. 
N~oo \ M=_I n=M+l I 

(30) Let A~ = 1 and N1 be any even positive integer such that for every 
5 - M  + N r N > N1, supM ~I((1/N) ~,=M+ 1J~ : < (9/8)r/. 

Suppose that A 1, A2,'", Am ; N1, Nz,'", Nm have been defined and both sequen- 

ces are strictly increasing. Denote by Fm the distribution supported by {A1,A2, 
"",Am} that assigns to A t probability 1/(NiY)~=I(1/Ni) ) (i = 1,2,... m). Denote 

its mean by ~, and by ,-lr162 the partial sums of i.i.d., Fs-distributed random 

variables. Using Lemma 1, define Ns+l to be any even integer exceeding 2Ns 

such that whenever N > Ns+I/2, 

N i 
(31) sup ( l /N) E e(s(~s)eJ)-(1/Np)c(Jt'a{n~Iln<N~})! <r//8. 

J~ l  n = l  

Let Am+ 1 be a positive integer exceeding As and such that 

(32) C(Kn{Am+~ + n [ n ~ I , n <  Nm+lp})/(N,,,+~tO>(7/8)~l. 

Such an Am+ 1 exists, by the definition of r/. (Denote Q(M, N) = :I/N ~'~M+ N , , ,,.,.=M+ff(,). 

We leave it to the reader to check that 

lim sup Q(M, iV) > lim sup lim sup Q(M, N) = lim sup sup Q(M, N)). 
M~oo N~oo M'..*oo N~o~ Mel  

Observe that ~i~ 1 (1/Ni) < Y~ 1 (1/2) t < oo, and let F be the distribution that 

assigns to At (i --- 1,2, 3,...) probability 1/(N~E~~ 1(1/Ni)). We will now see that 

F satisfies (28). Fix m E I. Think of it as being large. Let X1, X2,-", XN,, be i.i.d., 

F-distributed random variables. Denote by Bm the event: {Among X1, X2,.. ', XN, 

all but one are less than Am', the exceptional one equals Am and its index is at 

most (Nm/2)}. The probability of Bm is 

P(Bm)=(Ns/2)(c/N,) [1-(C/Nm) ~ ( N m / N i )  INto- l ,  

where J = m 

c = ( 1 / N  j)  . 
/ = 1  

Since 

(33) 

( N m / N I )  < Z 2 - i  = 2, 
J=m y = 0  

lim inf e(Bm) ~ (c/2) exp ( -  2c). 
m.-~ oO 
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(S.) will denote partial sums of F-distributed variables and (T.) partial sums of 

Fro-distributed variables. 

Nm Nm 

X P(S. e K) >= ~. P(S. ~ K) = P(B,,) 
n=l  n=(N /2)+1 

(34) 
Nm 

= P(Bm) Y~ P(A. + 7". E K) = P(B,,) 
n = ( N m ] 2 ) +  1 

Use (31) to expand (34) further: 

N,,, 

N~ 

X P(S. e K/B,,,) 
n = (N,./2) + 1 

Nm 

~, P(A.. + 7". ~ K) 
n = l  

(N,,I2) 
- X P(A= + 7". ~ K)]. 

n = l  

~, P(S. ~ K) > NmP(Bm) [(1/Nm#)C(K ~ {Am + n] n ~ I. n < N,d~)) 
n = l  

(35) _ ( 1 / n s p ) C ( K n { A m + n l n e i ,  n < � 8 9  

Apply (30) and (32) to (35), to obtain 

(36) (l/N,.) ]~ P ( S . e K ) >  P(B,.) ~ l - - i ~ r l - ~ q  =P(B,.)q/8. 
n = l  

And finally, from (36), 

l imsupE 1]N f(S.) = lim sup (1/N) ~ P ( S . e K ) > c e x p ( - 2 c ) q / 1 6 > O .  
N"-* oo = N'-* ~o n = l  
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